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Abstract
We give a method for the exact computation of the mobility of a particle
diffusing in a lattice gas with defects. We describe the method by considering
its application to the computation of the mobility of a particle diffusing in a
lattice with defects in the form of dead-ends. The mobility initially increases
linearly with field intensity, then crosses over to a nonlinear behaviour and
reaches a maximum. Beyond this point the mobility decreases with increasing
field intensity, showing an anomalous behaviour which may be attributed to
partial confinement imposed by the field. The proposed method is general and
may be applied to the computation of arbitrary moments of the probability
function of a single particle diffusing in a lattice gas with defects of arbitrary
characteristics.

1. Introduction

Systems constituted by particles hopping in a lattice have been used extensively as simple
models for studying both diffusion and transport phenomena in a variety of media. Applications
include the study of atomic diffusion in solids (Allnatt and Lidiard 1993), the modelling of ionic
motion in ionic conductors (Balkanski and Elliott 1998) and the study of growth phenomena
in a variety of systems (Stanley and Ostrowsky 1986). A broad survey of applications is given
by Bunde and Havlin (1991).

The properties of model systems with either single or many particles, moving in either
perfect or disordered lattices, have been extensively studied (Hughes 1995, Bouchaud and
Georges 1990, Havlin and Ben-Avraham 1987, Haus and Kehr 1987, Tahir-Kheli and Elliott
1983). Most of these studies have been concerned with the effect of static and dynamic disorder
on the diffusion constant of individual particles. Transport properties have commonly been
inferred from the Einstein relation between diffusion and conductivity, which is accepted to
hold for small values of bias in systems far from a percolation threshold (Havlin and Ben-
Avraham 1987 p 697, Bouchaud and Georges 1990 p 235).
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Here we will restrict ourselves to single-particle systems with static disorder. A great deal
of effort has been dedicated to the computation of the diffusion constant for a broad variety
of models of disorder in such systems. Models in which the sites available for the diffusing
particle are arranged in a regular lattice, and the disorder is caused by an irregular distribution
of the transition rates, have been extensively investigated, with effort also dedicated to the
study of systems in which the sites are randomly distributed in space (Perondi and Elliott
1993). Depending on the type of defect, the diffusing particle may display either normal or
anomalous diffusive behaviour. While studies concerning the former case have been reviewed
by Haus and Kehr (1987), studies concerning the latter have been reviewed by Bouchaud and
Georges (1990). Systems in which the total probability is not conserved,such as those modelled
with traps, have also received a great deal of attention (Barkema et al 2001, Giacometti and
Murthy 1996).

Both numerical and analytical methods have been employed for the study of diffusion
in disordered systems. While Monte Carlo simulations are by far the most well-known
representative of the former category (Kehr and Binder 1984), examples of the latter category
are varied and span a broad variety of techniques. In the case of single-particle disordered
systems, effective medium approximations have been very much successful in computing
diffusion properties for low concentrations of defects (Elliott et al 1974, Webman 1981, Hilfer
1991). Computing single-particle diffusion properties in structures near a percolation threshold
or on incipient percolating clusters is still a very much open and challenging subject (Havlin
and Ben-Avraham 1987).

As regards non-statistical numerical methods, a great deal of effort has been devoted
to simple one-dimensional systems (Alexander et al 1981, Dyson 1953), mainly due to the
difficulties in tackling higher-dimensional systems. Computing the one-particle distribution
function and its moments exactly amounts to solving a coupled infinite set of differential
equations, a task beyond the reach of current techniques in the absence of special symmetries.

The numerical solution of the rate equations requires, in general, two types of
approximation. First, the infinite system is approximated by a finite system with the application
of suitable boundary conditions. Second, numerically computed properties are averaged over
a subset of the possible configurations of the disorder and over all possible initial conditions
for the system. For self-averaging properties the averaging over different configurations of the
disorder may be omitted. Both Monte Carlo and non-statistical numerical methods make use
of these approximations.

Motivated by applications such as the study of ionic conduction in structures with special
geometry, we have been developing and implementing a novel method for the computation
of moments of the distribution function in disordered systems, which exhibits versatility and
ease of implementation. The method is quite general and may be applied to lattices with
arbitrary topology and to models of disorder with arbitrary characteristics. In the proposed
approach, the computation of exact moments of the distribution function is reduced to a matrix
multiplication algorithm, with clear advantages over either a direct numerical or a statistical
solution of the rate equations. Similar approaches have already been considered for the study
of diffusion in one-dimensional (Perondi and Binder 1993a) and two-dimensional (Perondi
and Binder 1993b, Perondi 1993) many-particle systems. Our objective in this article is to
present this new approach for single-particle systems and to illustrate its application to the
study of the behaviour with field strength of the mobility of a diffusing particle in a lattice with
defects in the form of dead-ends. We next briefly characterize the problem.

In single-particle systems, the field has the effect of making the diffusing particle move
more likely in the field direction than against it. If the field is the same everywhere, i.e., there
is a constant bias, and there are no defects in the form of dead-ends, the particle develops a drift
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velocity which increases monotonically with field intensity, resulting in a constant mobility,
the value of which is expected to depend on the concentration and shape of the defects. If
the defects, otherwise, display a geometric form which favours confining the diffusing particle
along the field direction, the field gives rise to two antagonistic effects on the motion of the
particle. While movement is more likely along the field direction on normal sites, inside
defects the field tends to trap the particle, thus delaying the progress of the particle along the
field direction. The net result is a particle mobility that displays a highly nonlinear behaviour
with field intensity.

It has been argued that, in systems with confining defects, the characteristic behaviour
of the mobility will depend on the distribution p(l) for the length l of the confining
defects and on the system size (Bouchaud and Georges 1990 p 244). If p(l) decays more
slowly than exponentially, the system will display a time-dependent mobility which vanishes
asymptotically with time. If p(l) decays exponentially, a dynamic phase transition will
take place in infinite systems, with the mobility initially increasing monotonically with field
intensity and then abruptly vanishing for field intensities higher than a critical value Ec. For
finite systems, the abrupt vanishing at Ec gives place to a maximum followed by an exponential
decay. Finally, if p(l) decays more quickly than exponentially, the mobility will display a non-
zero value for any field intensity independently of system size, vanishing asymptotically for
large values of the field intensity.

The model we investigate in this article may be classified in this latter category. We show
that, also for this case, the mobility for large values of field intensity displays a behaviour that
may be fitted to an exponential decay.

The article is organized as follows. Section 2 is devoted to a detailed description of the
proposed method, and section 3 shows its application to the disordered lattice outlined above.
Finally, section 4 gives the conclusions.

2. Description of the method

In a typical single-particle computer simulation the hopping rates {Jil} are chosen so as to
model the main physical characteristics of the system one wishes to study. A finite lattice is
then generated and periodic boundary conditions are imposed on the model. The computed
quantities, in general moments of the distribution function, are averages over a large number
of history runs. The simulated situation is physically equivalent to that of a moving particle in
an infinite lattice formed by the repetition of a basic pattern. When computing infinite-lattice
related quantities, one is essentially keeping track of the number of times a particle crosses the
boundaries of the basic pattern in a given direction.

The method we describe in this paper is essentially a formal extension of this procedure,
in which a finite-lattice problem is solved while a bookkeeping of the number of times a given
path crosses any of the boundaries is maintained. In this way one may establish a mapping
of each path linking two sites in the finite lattice into a path linking two sites in the infinite
lattice, and thus relate the probability functions of the two systems. We next discuss a way of
formalizing this procedure.

For the sake of simplicity we consider a one-dimensional example. Extensions to higher
dimensions are straightforward. Let N be the number of lattice sites in the basic segment from
which the infinite lattice is generated by space translation. Once the hopping rates {Jil} are
defined and a total transition rate ε0 has been chosen, we may construct the transition matrix
A for the finite lattice, the elements of which are defined by

Alj = pl j , l, j ∈ [1, N], (1)
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where

pl j = Jl j

ε0
, (2)

and the diagonal elements {Jii} are defined by

Jii = ε0 −
∑

l �=i

Jli . (3)

In order to classify paths according to the number of times a boundary is crossed in a given
direction, we associate a phase factor exp(iθ) to the transition matrix element connecting site
N to site 1 (p1N ). To the reverse transition we associate a phase exp(−iθ). We will denote the
resulting matrix by A(θ). In terms of this matrix, the probability that a particle initially at site
j reaches site l in n steps, with a net number of r boundary crossings, may be expressed as

Pr
l j (n) = 1

2π

∫ π

−π

[An(θ)]l j exp(−irθ) dθ. (4)

Since each path is formed by a succession of individual transitions and the probability
associated with a path is given by the product of the probabilities of each individual transition,
a path with a net number of r boundary crossings will exhibit a phase factor exp(irθ). Since
[An(θ)]l j contains the sum of the probabilities of all paths of length n linking site j to site
l, the integral filters out the corresponding quantity for r boundary crossings. In this way,
the finite-lattice probability Pr

l j (n) may be mapped into the infinite-lattice probability that the
particle goes from site j to site l + r N in n steps. Thus we may write

Pl+r N, j (n) = 1

2π

∫ π

−π

[An(θ)]l j exp(−irθ) dθ, (5)

where P , from now on, stands for the infinite-lattice probability function. By inverting the
Fourier transform in equation (5) and taking derivatives one obtains

∑

r

r k Pl+r N, j (n) =
(

−i
∂

∂θ

)k

[An(θ)]l j |θ=0. (6)

By making use of equation (6), the first and second moments of the distribution function after
n steps, for a particle beginning at site j at n = 0, may, correspondingly, be given by

〈X〉 j (n) =
N∑

l=1

(l − j)(An(θ))l j |θ=0 + N
N∑

l=1

(
−i

∂

∂θ

)
(An(θ))l j |θ=0, (7)

〈X2〉 j (n) =
N∑

l=1

(l − j)2[An(θ)]l j |θ=0 + 2N
N∑

l=1

(l − j)

(
−i

∂

∂θ

)
[An(θ)]l j |θ=0

+ N2
N∑

l=1

(
−i

∂

∂θ

)2

[An(θ)]l j |θ=0. (8)

The mean displacement and the mean square displacement after n steps, averaged over all
possible initial positions of the particle, may then be obtained from equations (7) and (8) in
the form

〈R〉(n) = 1

N

∑

j

(〈X〉 j (n)), (9)

〈R2〉(n) = 1

N

∑

j

(〈X2〉 j (n) − (〈X〉 j (n))2). (10)
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For sufficiently large n, one may obtain expressions for 〈R(t)〉 and 〈R2(t)〉 by substituting ε0t
for n in equations (9) and (10).

The drift velocity and the diffusion coefficient may then be obtained directly from

vd = lim
n→∞

〈R(n)〉ε0

n
, (11)

D = lim
n→∞

〈R2(n)〉ε0

2n
. (12)

To carry through the calculations outlined above the derivatives in equations (7) and (8) have
to be evaluated. From equation (6) we see that the knowledge of An(θ) up to order k in θ

enables the calculation of all moments of P up to the kth order. A simple method for evaluating
the first and second derivatives is as follows. By expanding the matrix A in powers of θ we
obtain

A(θ) = A + iθ B − θ2

2
C + o(θ3). (13)

Squaring A(θ) and keeping terms up to second order yields

A2(θ) = A2 + iθ(AB + B A) − θ2

2
(AC + C A + 2B2)

= A2 + iθ B2 − θ2

2
C2. (14)

The above procedure may be generalized to arbitrary n:

An(θ) = An + iθ Bn − θ2

2
Cn, (15)

where

An = An−1 A, (16)

Bn = An−1 B + Bn−1 A, (17)

Cn = An−1C + Cn−1 A + 2Bn−1 B. (18)

The first and second derivatives appearing in equations (7) and (8) are then directly given
by the matrices Bn and Cn , respectively. Equations (16)–(18) define a simple iterative
procedure for calculating these matrices. This procedure is easily generalized to the
calculation of higher-order moments. The algorithm outlined above yields exact results
for the one-particle probability function moments. Its computer implementation is quite
straightforward.

3. Application to the computation of the mobility of a single particle

Next we apply the method described above to the study of the mobility displayed by a particle
diffusing in a lattice with defects in the form of dead-ends, under the influence of an external
bias. We consider a system in the form shown in figure 1. The finite lattice is a 7×7 lattice with
defects as shown in figure 2, where the dashed segments represent forbidden transitions. The
finite-lattice transition matrix has 49 × 49 elements, since each site reachable by the particle
represents a possible state. A field is supposed to be applied in the x-direction, inducing a drift
velocity in the positive x-direction. The elements of the transition matrix, for movement in
the x-direction in the sense favoured by the bias, are given by pil = J+/ε0, for normal bonds,
pil = 0, for defective bonds, and pil = J+ exp(iθx)/ε0, for transitions in the positive x-direction
connecting sites at opposite edges of the finite lattice. The matrix elements associated to the
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Figure 1. Model of the studied system. The system comprises an array of defects in the form of
dead-ends. The figure shows four units of the finite lattice (see text).

Figure 2. Model for the defect. The figure shows the structure of the defect and its position in the
7 × 7 lattice which by translations in the x- and y-directions forms the infinite lattice. The dashed
segments indicate the forbidden transitions.

corresponding reverse transitions are given by the complex conjugate of these expressions,
with J+ replaced by J−, which are defined as

J+ = J0 exp(Fx), (19)

J− = J0 exp(−Fx), (20)

where J0 is the transition rate without bias, Fx is a dimensionless parameter related to the
system physical variables by Fx = Ex a/2KbT , where Ex is the field intensity, a the lattice
spacing and KbT the usual thermal energy. The elements of the transition matrix in the
y-direction have similar expressions, but with Fy = 0. Finally, we define the maximum
transition rate off a site as ε0 = J0(2 + exp(Fx) + exp(−Fx)).
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Figure 3. Computed mean displacements as a function of time. The figure shows the mean
displacement for typical values of the external field. Field values are as follows: higher curve
F = 0.20; middle curve F = 0.55; lower curve F = 0.95.
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Figure 4. Average drift velocity. The figure shows the average drift velocity as a function of the
field intensity.

The matrices A, B and C , defined in section 2, are then readily constructed, by following
the procedure given therein. By implementing the iterative procedure also given there and
making use of equations (9) and (10), we have computed the first and second moments of the
one-particle distribution function. All results are given in units of J0 and a. Typical computed
mean displacements as a function of time, for particular values of bias, are shown in figure 3.
The computed average drift velocity as a function of bias is given in figure 4. The connection
between the discrete and continuous time pictures has been established by equating n = ε0t .

The drift velocity for each value of bias has been obtained through a linear fitting of the
mean displacement with time, for long times. It is seen that the drift velocity initially increases
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Figure 5. Average drift velocity as a function of field intensity for high values of the field intensity.
The figure shows a comparison between the computed drift velocity (points) and the functional
form c1 + c2 exp(−(x − c3)/c4) (line), where c1 = −0.018 77, c2 = 0.201 75, c3 = 0.900 00,
c4 = 0.309 36.

linearly with bias, then crosses over to a nonlinear regime, reaches a maximum and then decays
with further increase of the field intensity, indicating that the diffusing particle spends longer
times in the traps with increasing bias, in plain agreement with previously published results
and studies (Bouchaud and Georges 1990 p 127, Barma and Dhar 1982).

In the very low bias limit, the Einstein relation between diffusion constant and mobility is
expected to hold. The diffusion constant, in the zero bias condition, has been obtained from the
long-time behaviour of 〈R2〉 when F = 0, yielding D = 0.633 57, a value, as expected, smaller
than one, the perfect lattice value. By fitting a line c1 + c2 F to the vd × F curve in the limit of
very low bias, the values c1 = 0.000 01 and c2 = 1.348 01 are obtained. In terms of the units
and definitions we are working with we expect vd = 2DF , hence yielding D = 0.674 01, a
value that differs by about 6% from the zero-bias result. Explaining this difference may require
some further analysis. Possibly, the anisotropy introduced by the defects plays a role in this
explanation.

Finally, we consider the behaviour of the drift velocity in the limit of large values of bias.
It has been asserted that in a disordered system, with quenched defects, in the limit of large
bias, when the relation between hopping transition rate and bias is as given above, the drift
velocity decays exponentially with bias (Bouchaud and Georges 1990 p 244). We expect this
relation to hold also for the case of the array of traps considered in our example. In figure 5
a comparison between the computed result and the result obtained by fitting to the functional
form c1 + c2 exp(−(x − c3)/c4) shows remarkably good agreement, lending support to this
conjecture.

4. Conclusions

A novel method for exactly computing the moments of one-particle distribution functions
associated to a single particle diffusing in a lattice gas with defects of arbitrary characteristics,
when periodic boundary conditions are imposed, has been presented. The method has been
shown to be particularly suitable for studies concerning the mobility of a particle diffusing in a
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lattice gas with confining defects. Since the results obtained are free from statistical errors and
averaged over all initial possible positions of the particle in the lattice, the method seems to
compare advantageously with Monte Carlo simulations in the study of phenomena governed
by specific laws, such as in the cases of either anomalous mobility or anomalous diffusion,
where very precise data are needed.

The method is general and, in principle, may be applied to any model system, even to
those in which probability is not conserved, due to the presence of traps, for instance.
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